¹³C-¹³C Long Range Spin-Spin Coupling Constants in Naphthalene Derivatives

By STEFAN BERGER* and KLAUS-PETER ZELLER*

(Fachbereich Chemie der Universität D-355 Marburg, Lahnberge and Institut für Organische Chemie der Universität D-74 Tübingen, Auf der Morgenstelle)

Summary 1-Hydroxy- and 1-acetoxy-naphthalene with a ¹³C label at the α -position have been synthesized; the ¹³C-¹³C spin coupling constants have been measured by Fourier transform n.m.r. spectroscopy and interpreted in terms of INDO and Hückel calculations.

ALTHOUGH reports of the use of carbon-carbon coupling constants¹ between directly bonded carbon atoms are steadily increasing, very little is known about the long range transmission both in aromatic² or olefinic² and aliphatic³ systems. The use of ¹⁵N-¹³C spin coupling constants as a conformational probe in aliphatic systems has been widely discussed recently.⁴ ¹⁵N-¹³C long-range spin coupling constants show a directional effect of the nitrogen lone pair in aromatic systems.⁵ The only study with a ¹³C label incorporated in an aromatic ring system, toluene,² shows a remarkable alternating effect of the ¹³C-¹³C coupling constants, suggesting that π -effects may be the main source of transmission.

To prove whether this coupling constant alternation also holds in more extended aromatic systems, we have synthesized 1-hydroxy- (1a) and 1-acetoxy-naphthalene (1b) with a ¹³C label (60%) at the α -position. 1-Hydroxy[1-¹³C]napthalene was synthesized by catalytic dehydrogenation of [1-¹³C]- α -tetralone with Pd at 200°. Details will be described later. The ¹³C-spectra were recorded at least three times with Varian XL-100 and CFT-20 spectrometers at 25·16 and 20 MHz, respectively. The minimum possible

FIGURE. Plot of Hückel bond orders vs. 13C-13C spin coupling constants in (1a). Sum of bond orders for each linkage is computed. ${}^{2}J_{CC}$ values taken to be negative, by analogy with C-H coupling constants; ${}^{4}J_{CC}$ and ${}^{1}J_{CC}$ not given.

sweep-width was chosen to provide a spectral resolution after an 8k Fourier transform of 0.3 Hz/point. The solutions were ca. 10% in CDCl₃ and the results from both spectrometers agreed very well within experimental error. Chemical shift assignments were made using the increment system given recently by Wells and his co-workers6 on naphthalene chemical shifts.

The coupling constants in the Table reveal the well known pattern of second substitution in naphthalene derivatives: positions where simple valence bond theory

predicts π -electron excess show a coupling constant, while at the 'meta' positions the spin coupling constants are beyond spectral resolution.

¹³C-¹³C Spin coupling constants^a and chemical shifts^b in (1a) and (1b)

Carbon				
atom	(1a)		(1b) ^c	
1		$(151 \cdot 4)$		(146.9)
2	70.0	(108.8)	74 ·0	(118.2)
3	< 0.6	$(125 \cdot 9)$	< 0.6	$(125 \cdot 4)$
4	7.9	(120.9)	8.6	$(125 \cdot 9)$
5	3 ·8	(127.7)	4 ·2	(128.0)
6	<0.6	(126.3)	< 0.6	(126.4)
7	4.5	$(125 \cdot 3)$	5.0	(126.4
8	< 0.6	(121.6)	< 0.6	(121.3)
9	65.4	(124.5)	65.5	(126-9)
10	1.8	(134-9)	$2 \cdot 0$	(1 34 ·8)

^a Given in Hz, accuracy ± 0.3 Hz. ^b δ , p.p.m. relative to Me₄Si given for the unlabelled compounds. ^c $\delta_{C=0}$ 169.0, J 3.7 Hz, δ_{Me} 20·4, J 2·1 Hz.

We have calculated the ¹³C-¹³C spin coupling constants taking only the Fermi contact interaction into account using the INDO-approach given by Pople.⁷ Although the results give rather poor agreement with the observed values, they do reveal the experimental trend.

In addition we have taken the bond orders from a simple Hückel calculation⁸ and tried to correlate the long-range spin coupling constants with the sum of the π -bond orders for each linkage.† The Figure shows a rough linear relationship for (1a). However, ${}^{4}J_{cc}$ to C-6 had to be left out from the correlation. We conclude on the basis of these findings that ¹³C-¹³C spin coupling constants in aromatic systems are mainly transmitted by π -interaction.

(Received, 24th February 1975; Com. 222.)

 \uparrow Added in proof: As one referee suggested, two pathways are possible for the three-bond coupling to C-4. The sum of the π -bond orders for the linkage 1,9,10,4 is 0.33 units lower than for the pathway 1,2,3,4. A similar approach has now been published independently by J. L. Marshall, A. M. Ihrig, and D. E. Miiller, J. Magn. Res., 1974, 16, 439.

¹ W. M. Litchman and D. M. Grant, J. Amer. Chem. Soc., 1967, 89, 6775; V. J. Bartuska and G. E. Maciel, J. Magn. Res., 1971, 5, 211; R. D. Bertrand, D. M. Grant, E. L. Allred, J. C. Hinshaw, and A. B. Strong, J. Amer. Chem. Soc., 1972, 94, 997; F. J. Weigert and J. D. Roberts, *ibid.*, p. 6021; K. D. Summerhays and G. E. Maciel, *ibid.*, p. 8348; M. Pomerantz and D. F. Hillenbrand, J. Amer. Chem. Soc., 1973, 95, 5809; H. Günther and W. Herrig, Chem. Ber., 1973, 106, 3938; H. Seto, L. W. Cary, and M. Tanabe, Tetrahedron Letters, 1974, 4491.

² J. L. Marshall, A. M. Ihrig, and D. E. Miiller, J. Mol. Spec., 1972, 43, 323; J. L. Marshall and D. E. Miiller, Org. Mag. Res., 1974, 6, 395; A. M. Ihrig and J. L. Marshall, J. Amer. Chem. Soc., 1972, 94, 1756; G. Becher, W. Lüttke, and G. Schrumpf, Angew. Chem. Internat. Edn., 1973, 12, 339.

 ⁸ J. L. Marshall and D. E. Miiller, J. Amer. Chem. Soc., 1973, 95, 8305.
⁴ R. Di Blasi and K. D. Kopple, J.C.S. Chem. Comm., 1975, 33; S. Berger and J. D. Roberts, J. Amer. Chem. Soc., 1974, 96, 6757 and references therein.

⁶ P. S. Pregosin, E. W. Randall, and A. I. White, J.C.S. Perkin II, 1972, 1.
⁶ P. R. Wells, D. P. Arnold, and D. Doddrell, J.C.S. Perkin II, 1974, 1745.
⁷ G. E. Maciel, J. W. McIver, N. S. Ostlund, and J. A. Pople, J. Amer. Chem. Soc., 1970, 92, 11.

⁸ H. H. Greenwood, 'Computing Methods in Quantum Organic Chemistry,' Wiley-Interscience, London, 1972. The α-naphthylmethyl framework was used.